
List Comprehensions
List comprehensions are declarative ways of defining lists in python. The following ways of building a list
are equivalent:

l = [x**2 for x in range(1, 10)]

l = []
for x in range(1, 10):
 l.append(x**2)

m = [x for x in range(1, 10) if x % 2 == 1]

m = []
for x in range(1, 10):
 if x % 2 == 1:
 m.append(x)

n = [(x, y) for x in range(1, 10) for y in range(1, 10) if x > y]

n = []
for x in range(1, 10):
 for y in range(1, 10):
 if x > y:
 n.append((x, y))

The general form is:

[expression for x in y condition]

Dictionary Comprehensions
Dictionary comprehensions are the analogous construct for dictionaries:

o = {x: x**3 for x in range(1, 100) if math.sqrt(x).is_integer()}

o = {}
for x in range(1, 100):
 if math.sqrt(x).is_integer():
 o[x] = x**3

I have never used a dictionary comprehension outside of exercises. I don't know how useful they are, and
I'm struggling to think of good examples.

Generators
A generator is a function that yields values rather than returning them. For example:

def squares():
 i = 0
 while True

 yield i**2
 i += 1

The built in range function is similar to a generator. Generators are iterable:

for square in squares():
 print(square)
 if square > 10000:
 break

But only once!

Generators can take arguments:

def exponents(exp):
 i = 0
 while True
 yield i**exp
 i += 1

Generator expressions are similar to list comprehensions:

squares = (i**2 for i in range(10000))

Generators are lazy, values are calculated when needed, meaning they can represent infinite sequences
without requiring infinite memory.

	List Comprehensions
	Dictionary Comprehensions
	Generators

