/* wiring.c - Partial implementation of the Wiring API for the ATmega8. Part of Arduino - http://www.arduino.cc/ Copyright (c) 2005-2006 David A. Mellis This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "wiring_private.h" // the prescaler is set so that timer0 ticks every 64 clock cycles, and the // the overflow handler is called every 256 ticks. #define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256)) // the whole number of milliseconds per timer0 overflow #define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000) // the fractional number of milliseconds per timer0 overflow. we shift right // by three to fit these numbers into a byte. (for the clock speeds we care // about - 8 and 16 MHz - this doesn't lose precision.) #define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3) #define FRACT_MAX (1000 >> 3) volatile unsigned long timer0_overflow_count = 0; volatile unsigned long timer0_millis = 0; static unsigned char timer0_fract = 0; #if defined(TIM0_OVF_vect) ISR(TIM0_OVF_vect) #else ISR(TIMER0_OVF_vect) #endif { // copy these to local variables so they can be stored in registers // (volatile variables must be read from memory on every access) unsigned long m = timer0_millis; unsigned char f = timer0_fract; m += MILLIS_INC; f += FRACT_INC; if (f >= FRACT_MAX) { f -= FRACT_MAX; m += 1; } timer0_fract = f; timer0_millis = m; timer0_overflow_count++; } unsigned long millis() { unsigned long m; uint8_t oldSREG = SREG; // disable interrupts while we read timer0_millis or we might get an // inconsistent value (e.g. in the middle of a write to timer0_millis) cli(); m = timer0_millis; SREG = oldSREG; return m; } unsigned long micros() { unsigned long m; uint8_t oldSREG = SREG, t; cli(); m = timer0_overflow_count; #if defined(TCNT0) t = TCNT0; #elif defined(TCNT0L) t = TCNT0L; #else #error TIMER 0 not defined #endif #ifdef TIFR0 if ((TIFR0 & _BV(TOV0)) && (t < 255)) m++; #else if ((TIFR & _BV(TOV0)) && (t < 255)) m++; #endif SREG = oldSREG; return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond()); } void delay(unsigned long ms) { uint32_t start = micros(); while (ms > 0) { yield(); while ( ms > 0 && (micros() - start) >= 1000) { ms--; start += 1000; } } } /* Delay for the given number of microseconds. Assumes a 1, 8, 12, 16, 20 or 24 MHz clock. */ void delayMicroseconds(unsigned int us) { // call = 4 cycles + 2 to 4 cycles to init us(2 for constant delay, 4 for variable) // calling avrlib's delay_us() function with low values (e.g. 1 or // 2 microseconds) gives delays longer than desired. //delay_us(us); #if F_CPU >= 24000000L // for the 24 MHz clock for the aventurous ones, trying to overclock // zero delay fix if (!us) return; // = 3 cycles, (4 when true) // the following loop takes a 1/6 of a microsecond (4 cycles) // per iteration, so execute it six times for each microsecond of // delay requested. us *= 6; // x6 us, = 7 cycles // account for the time taken in the preceeding commands. // we just burned 22 (24) cycles above, remove 5, (5*4=20) // us is at least 6 so we can substract 5 us -= 5; //=2 cycles #elif F_CPU >= 20000000L // for the 20 MHz clock on rare Arduino boards // for a one-microsecond delay, simply return. the overhead // of the function call takes 18 (20) cycles, which is 1us __asm__ __volatile__ ( "nop" "\n\t" "nop" "\n\t" "nop" "\n\t" "nop"); //just waiting 4 cycles if (us <= 1) return; // = 3 cycles, (4 when true) // the following loop takes a 1/5 of a microsecond (4 cycles) // per iteration, so execute it five times for each microsecond of // delay requested. us = (us << 2) + us; // x5 us, = 7 cycles // account for the time taken in the preceeding commands. // we just burned 26 (28) cycles above, remove 7, (7*4=28) // us is at least 10 so we can substract 7 us -= 7; // 2 cycles #elif F_CPU >= 16000000L // for the 16 MHz clock on most Arduino boards // for a one-microsecond delay, simply return. the overhead // of the function call takes 14 (16) cycles, which is 1us if (us <= 1) return; // = 3 cycles, (4 when true) // the following loop takes 1/4 of a microsecond (4 cycles) // per iteration, so execute it four times for each microsecond of // delay requested. us <<= 2; // x4 us, = 4 cycles // account for the time taken in the preceeding commands. // we just burned 19 (21) cycles above, remove 5, (5*4=20) // us is at least 8 so we can substract 5 us -= 5; // = 2 cycles, #elif F_CPU >= 12000000L // for the 12 MHz clock if somebody is working with USB // for a 1 microsecond delay, simply return. the overhead // of the function call takes 14 (16) cycles, which is 1.5us if (us <= 1) return; // = 3 cycles, (4 when true) // the following loop takes 1/3 of a microsecond (4 cycles) // per iteration, so execute it three times for each microsecond of // delay requested. us = (us << 1) + us; // x3 us, = 5 cycles // account for the time taken in the preceeding commands. // we just burned 20 (22) cycles above, remove 5, (5*4=20) // us is at least 6 so we can substract 5 us -= 5; //2 cycles #elif F_CPU >= 8000000L // for the 8 MHz internal clock // for a 1 and 2 microsecond delay, simply return. the overhead // of the function call takes 14 (16) cycles, which is 2us if (us <= 2) return; // = 3 cycles, (4 when true) // the following loop takes 1/2 of a microsecond (4 cycles) // per iteration, so execute it twice for each microsecond of // delay requested. us <<= 1; //x2 us, = 2 cycles // account for the time taken in the preceeding commands. // we just burned 17 (19) cycles above, remove 4, (4*4=16) // us is at least 6 so we can substract 4 us -= 4; // = 2 cycles #else // for the 1 MHz internal clock (default settings for common Atmega microcontrollers) // the overhead of the function calls is 14 (16) cycles if (us <= 16) return; //= 3 cycles, (4 when true) if (us <= 25) return; //= 3 cycles, (4 when true), (must be at least 25 if we want to substract 22) // compensate for the time taken by the preceeding and next commands (about 22 cycles) us -= 22; // = 2 cycles // the following loop takes 4 microseconds (4 cycles) // per iteration, so execute it us/4 times // us is at least 4, divided by 4 gives us 1 (no zero delay bug) us >>= 2; // us div 4, = 4 cycles #endif // busy wait __asm__ __volatile__ ( "1: sbiw %0,1" "\n\t" // 2 cycles "brne 1b" : "=w" (us) : "0" (us) // 2 cycles ); // return = 4 cycles } void init() { // this needs to be called before setup() or some functions won't // work there sei(); // on the ATmega168, timer 0 is also used for fast hardware pwm // (using phase-correct PWM would mean that timer 0 overflowed half as often // resulting in different millis() behavior on the ATmega8 and ATmega168) #if defined(TCCR0A) && defined(WGM01) sbi(TCCR0A, WGM01); sbi(TCCR0A, WGM00); #endif // set timer 0 prescale factor to 64 #if defined(__AVR_ATmega128__) // CPU specific: different values for the ATmega128 sbi(TCCR0, CS02); #elif defined(TCCR0) && defined(CS01) && defined(CS00) // this combination is for the standard atmega8 sbi(TCCR0, CS01); sbi(TCCR0, CS00); #elif defined(TCCR0B) && defined(CS01) && defined(CS00) // this combination is for the standard 168/328/1280/2560 sbi(TCCR0B, CS01); sbi(TCCR0B, CS00); #elif defined(TCCR0A) && defined(CS01) && defined(CS00) // this combination is for the __AVR_ATmega645__ series sbi(TCCR0A, CS01); sbi(TCCR0A, CS00); #else #error Timer 0 prescale factor 64 not set correctly #endif // enable timer 0 overflow interrupt #if defined(TIMSK) && defined(TOIE0) sbi(TIMSK, TOIE0); #elif defined(TIMSK0) && defined(TOIE0) sbi(TIMSK0, TOIE0); #else #error Timer 0 overflow interrupt not set correctly #endif // timers 1 and 2 are used for phase-correct hardware pwm // this is better for motors as it ensures an even waveform // note, however, that fast pwm mode can achieve a frequency of up // 8 MHz (with a 16 MHz clock) at 50% duty cycle #if defined(TCCR1B) && defined(CS11) && defined(CS10) TCCR1B = 0; // set timer 1 prescale factor to 64 sbi(TCCR1B, CS11); #if F_CPU >= 8000000L sbi(TCCR1B, CS10); #endif #elif defined(TCCR1) && defined(CS11) && defined(CS10) sbi(TCCR1, CS11); #if F_CPU >= 8000000L sbi(TCCR1, CS10); #endif #endif // put timer 1 in 8-bit phase correct pwm mode #if defined(TCCR1A) && defined(WGM10) sbi(TCCR1A, WGM10); #endif // set timer 2 prescale factor to 64 #if defined(TCCR2) && defined(CS22) sbi(TCCR2, CS22); #elif defined(TCCR2B) && defined(CS22) sbi(TCCR2B, CS22); //#else // Timer 2 not finished (may not be present on this CPU) #endif // configure timer 2 for phase correct pwm (8-bit) #if defined(TCCR2) && defined(WGM20) sbi(TCCR2, WGM20); #elif defined(TCCR2A) && defined(WGM20) sbi(TCCR2A, WGM20); //#else // Timer 2 not finished (may not be present on this CPU) #endif #if defined(TCCR3B) && defined(CS31) && defined(WGM30) sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64 sbi(TCCR3B, CS30); sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode #endif #if defined(TCCR4A) && defined(TCCR4B) && defined(TCCR4D) /* beginning of timer4 block for 32U4 and similar */ sbi(TCCR4B, CS42); // set timer4 prescale factor to 64 sbi(TCCR4B, CS41); sbi(TCCR4B, CS40); sbi(TCCR4D, WGM40); // put timer 4 in phase- and frequency-correct PWM mode sbi(TCCR4A, PWM4A); // enable PWM mode for comparator OCR4A sbi(TCCR4C, PWM4D); // enable PWM mode for comparator OCR4D #else /* beginning of timer4 block for ATMEGA1280 and ATMEGA2560 */ #if defined(TCCR4B) && defined(CS41) && defined(WGM40) sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64 sbi(TCCR4B, CS40); sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode #endif #endif /* end timer4 block for ATMEGA1280/2560 and similar */ #if defined(TCCR5B) && defined(CS51) && defined(WGM50) sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64 sbi(TCCR5B, CS50); sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode #endif #if defined(ADCSRA) // set a2d prescaler so we are inside the desired 50-200 KHz range. #if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); #elif F_CPU >= 8000000 // 8 MHz / 64 = 125 KHz sbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); cbi(ADCSRA, ADPS0); #elif F_CPU >= 4000000 // 4 MHz / 32 = 125 KHz sbi(ADCSRA, ADPS2); cbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); #elif F_CPU >= 2000000 // 2 MHz / 16 = 125 KHz sbi(ADCSRA, ADPS2); cbi(ADCSRA, ADPS1); cbi(ADCSRA, ADPS0); #elif F_CPU >= 1000000 // 1 MHz / 8 = 125 KHz cbi(ADCSRA, ADPS2); sbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); #else // 128 kHz / 2 = 64 KHz -> This is the closest you can get, the prescaler is 2 cbi(ADCSRA, ADPS2); cbi(ADCSRA, ADPS1); sbi(ADCSRA, ADPS0); #endif // enable a2d conversions sbi(ADCSRA, ADEN); #endif // the bootloader connects pins 0 and 1 to the USART; disconnect them // here so they can be used as normal digital i/o; they will be // reconnected in Serial.begin() #if defined(UCSRB) UCSRB = 0; #elif defined(UCSR0B) UCSR0B = 0; #endif }