--- /dev/null
+#include "ch.h"
+#include "hal.h"
+
+#include "eeconfig.h"
+
+/*************************************/
+/* Hardware backend */
+/* */
+/* Code from PJRC/Teensyduino */
+/*************************************/
+
+/* Teensyduino Core Library
+ * http://www.pjrc.com/teensy/
+ * Copyright (c) 2013 PJRC.COM, LLC.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * 1. The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * 2. If the Software is incorporated into a build system that allows
+ * selection among a list of target devices, then similar target
+ * devices manufactured by PJRC.COM must be included in the list of
+ * target devices and selectable in the same manner.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+
+#if defined(K20x) /* chip selection */
+/* Teensy 3.0, 3.1, 3.2; mchck; infinity keyboard */
+
+// The EEPROM is really RAM with a hardware-based backup system to
+// flash memory. Selecting a smaller size EEPROM allows more wear
+// leveling, for higher write endurance. If you edit this file,
+// set this to the smallest size your application can use. Also,
+// due to Freescale's implementation, writing 16 or 32 bit words
+// (aligned to 2 or 4 byte boundaries) has twice the endurance
+// compared to writing 8 bit bytes.
+//
+#define EEPROM_SIZE 32
+
+// Writing unaligned 16 or 32 bit data is handled automatically when
+// this is defined, but at a cost of extra code size. Without this,
+// any unaligned write will cause a hard fault exception! If you're
+// absolutely sure all 16 and 32 bit writes will be aligned, you can
+// remove the extra unnecessary code.
+//
+#define HANDLE_UNALIGNED_WRITES
+
+// Minimum EEPROM Endurance
+// ------------------------
+#if (EEPROM_SIZE == 2048) // 35000 writes/byte or 70000 writes/word
+ #define EEESIZE 0x33
+#elif (EEPROM_SIZE == 1024) // 75000 writes/byte or 150000 writes/word
+ #define EEESIZE 0x34
+#elif (EEPROM_SIZE == 512) // 155000 writes/byte or 310000 writes/word
+ #define EEESIZE 0x35
+#elif (EEPROM_SIZE == 256) // 315000 writes/byte or 630000 writes/word
+ #define EEESIZE 0x36
+#elif (EEPROM_SIZE == 128) // 635000 writes/byte or 1270000 writes/word
+ #define EEESIZE 0x37
+#elif (EEPROM_SIZE == 64) // 1275000 writes/byte or 2550000 writes/word
+ #define EEESIZE 0x38
+#elif (EEPROM_SIZE == 32) // 2555000 writes/byte or 5110000 writes/word
+ #define EEESIZE 0x39
+#endif
+
+void eeprom_initialize(void)
+{
+ uint32_t count=0;
+ uint16_t do_flash_cmd[] = {
+ 0xf06f, 0x037f, 0x7003, 0x7803,
+ 0xf013, 0x0f80, 0xd0fb, 0x4770};
+ uint8_t status;
+
+ if (FTFL->FCNFG & FTFL_FCNFG_RAMRDY) {
+ // FlexRAM is configured as traditional RAM
+ // We need to reconfigure for EEPROM usage
+ FTFL->FCCOB0 = 0x80; // PGMPART = Program Partition Command
+ FTFL->FCCOB4 = EEESIZE; // EEPROM Size
+ FTFL->FCCOB5 = 0x03; // 0K for Dataflash, 32K for EEPROM backup
+ __disable_irq();
+ // do_flash_cmd() must execute from RAM. Luckily the C syntax is simple...
+ (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFL->FSTAT));
+ __enable_irq();
+ status = FTFL->FSTAT;
+ if (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL)) {
+ FTFL->FSTAT = (status & (FTFL_FSTAT_RDCOLERR|FTFL_FSTAT_ACCERR|FTFL_FSTAT_FPVIOL));
+ return; // error
+ }
+ }
+ // wait for eeprom to become ready (is this really necessary?)
+ while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
+ if (++count > 20000) break;
+ }
+}
+
+#define FlexRAM ((uint8_t *)0x14000000)
+
+uint8_t eeprom_read_byte(const uint8_t *addr)
+{
+ uint32_t offset = (uint32_t)addr;
+ if (offset >= EEPROM_SIZE) return 0;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ return FlexRAM[offset];
+}
+
+uint16_t eeprom_read_word(const uint16_t *addr)
+{
+ uint32_t offset = (uint32_t)addr;
+ if (offset >= EEPROM_SIZE-1) return 0;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ return *(uint16_t *)(&FlexRAM[offset]);
+}
+
+uint32_t eeprom_read_dword(const uint32_t *addr)
+{
+ uint32_t offset = (uint32_t)addr;
+ if (offset >= EEPROM_SIZE-3) return 0;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ return *(uint32_t *)(&FlexRAM[offset]);
+}
+
+void eeprom_read_block(void *buf, const void *addr, uint32_t len)
+{
+ uint32_t offset = (uint32_t)addr;
+ uint8_t *dest = (uint8_t *)buf;
+ uint32_t end = offset + len;
+
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ if (end > EEPROM_SIZE) end = EEPROM_SIZE;
+ while (offset < end) {
+ *dest++ = FlexRAM[offset++];
+ }
+}
+
+int eeprom_is_ready(void)
+{
+ return (FTFL->FCNFG & FTFL_FCNFG_EEERDY) ? 1 : 0;
+}
+
+static void flexram_wait(void)
+{
+ while (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) {
+ // TODO: timeout
+ }
+}
+
+void eeprom_write_byte(uint8_t *addr, uint8_t value)
+{
+ uint32_t offset = (uint32_t)addr;
+
+ if (offset >= EEPROM_SIZE) return;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ if (FlexRAM[offset] != value) {
+ FlexRAM[offset] = value;
+ flexram_wait();
+ }
+}
+
+void eeprom_write_word(uint16_t *addr, uint16_t value)
+{
+ uint32_t offset = (uint32_t)addr;
+
+ if (offset >= EEPROM_SIZE-1) return;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+#ifdef HANDLE_UNALIGNED_WRITES
+ if ((offset & 1) == 0) {
+#endif
+ if (*(uint16_t *)(&FlexRAM[offset]) != value) {
+ *(uint16_t *)(&FlexRAM[offset]) = value;
+ flexram_wait();
+ }
+#ifdef HANDLE_UNALIGNED_WRITES
+ } else {
+ if (FlexRAM[offset] != value) {
+ FlexRAM[offset] = value;
+ flexram_wait();
+ }
+ if (FlexRAM[offset + 1] != (value >> 8)) {
+ FlexRAM[offset + 1] = value >> 8;
+ flexram_wait();
+ }
+ }
+#endif
+}
+
+void eeprom_write_dword(uint32_t *addr, uint32_t value)
+{
+ uint32_t offset = (uint32_t)addr;
+
+ if (offset >= EEPROM_SIZE-3) return;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+#ifdef HANDLE_UNALIGNED_WRITES
+ switch (offset & 3) {
+ case 0:
+#endif
+ if (*(uint32_t *)(&FlexRAM[offset]) != value) {
+ *(uint32_t *)(&FlexRAM[offset]) = value;
+ flexram_wait();
+ }
+ return;
+#ifdef HANDLE_UNALIGNED_WRITES
+ case 2:
+ if (*(uint16_t *)(&FlexRAM[offset]) != value) {
+ *(uint16_t *)(&FlexRAM[offset]) = value;
+ flexram_wait();
+ }
+ if (*(uint16_t *)(&FlexRAM[offset + 2]) != (value >> 16)) {
+ *(uint16_t *)(&FlexRAM[offset + 2]) = value >> 16;
+ flexram_wait();
+ }
+ return;
+ default:
+ if (FlexRAM[offset] != value) {
+ FlexRAM[offset] = value;
+ flexram_wait();
+ }
+ if (*(uint16_t *)(&FlexRAM[offset + 1]) != (value >> 8)) {
+ *(uint16_t *)(&FlexRAM[offset + 1]) = value >> 8;
+ flexram_wait();
+ }
+ if (FlexRAM[offset + 3] != (value >> 24)) {
+ FlexRAM[offset + 3] = value >> 24;
+ flexram_wait();
+ }
+ }
+#endif
+}
+
+void eeprom_write_block(const void *buf, void *addr, uint32_t len)
+{
+ uint32_t offset = (uint32_t)addr;
+ const uint8_t *src = (const uint8_t *)buf;
+
+ if (offset >= EEPROM_SIZE) return;
+ if (!(FTFL->FCNFG & FTFL_FCNFG_EEERDY)) eeprom_initialize();
+ if (len >= EEPROM_SIZE) len = EEPROM_SIZE;
+ if (offset + len >= EEPROM_SIZE) len = EEPROM_SIZE - offset;
+ while (len > 0) {
+ uint32_t lsb = offset & 3;
+ if (lsb == 0 && len >= 4) {
+ // write aligned 32 bits
+ uint32_t val32;
+ val32 = *src++;
+ val32 |= (*src++ << 8);
+ val32 |= (*src++ << 16);
+ val32 |= (*src++ << 24);
+ if (*(uint32_t *)(&FlexRAM[offset]) != val32) {
+ *(uint32_t *)(&FlexRAM[offset]) = val32;
+ flexram_wait();
+ }
+ offset += 4;
+ len -= 4;
+ } else if ((lsb == 0 || lsb == 2) && len >= 2) {
+ // write aligned 16 bits
+ uint16_t val16;
+ val16 = *src++;
+ val16 |= (*src++ << 8);
+ if (*(uint16_t *)(&FlexRAM[offset]) != val16) {
+ *(uint16_t *)(&FlexRAM[offset]) = val16;
+ flexram_wait();
+ }
+ offset += 2;
+ len -= 2;
+ } else {
+ // write 8 bits
+ uint8_t val8 = *src++;
+ if (FlexRAM[offset] != val8) {
+ FlexRAM[offset] = val8;
+ flexram_wait();
+ }
+ offset++;
+ len--;
+ }
+ }
+}
+
+/*
+void do_flash_cmd(volatile uint8_t *fstat)
+{
+ *fstat = 0x80;
+ while ((*fstat & 0x80) == 0) ; // wait
+}
+00000000 <do_flash_cmd>:
+ 0: f06f 037f mvn.w r3, #127 ; 0x7f
+ 4: 7003 strb r3, [r0, #0]
+ 6: 7803 ldrb r3, [r0, #0]
+ 8: f013 0f80 tst.w r3, #128 ; 0x80
+ c: d0fb beq.n 6 <do_flash_cmd+0x6>
+ e: 4770 bx lr
+*/
+
+#elif defined(KL2x) /* chip selection */
+/* Teensy LC (emulated) */
+
+#define SYMVAL(sym) (uint32_t)(((uint8_t *)&(sym)) - ((uint8_t *)0))
+
+extern uint32_t __eeprom_workarea_start__;
+extern uint32_t __eeprom_workarea_end__;
+
+#define EEPROM_SIZE 128
+
+static uint32_t flashend = 0;
+
+void eeprom_initialize(void)
+{
+ const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
+
+ do {
+ if (*p++ == 0xFFFF) {
+ flashend = (uint32_t)(p - 2);
+ return;
+ }
+ } while (p < (uint16_t *)SYMVAL(__eeprom_workarea_end__));
+ flashend = (uint32_t)((uint16_t *)SYMVAL(__eeprom_workarea_end__) - 1);
+}
+
+uint8_t eeprom_read_byte(const uint8_t *addr)
+{
+ uint32_t offset = (uint32_t)addr;
+ const uint16_t *p = (uint16_t *)SYMVAL(__eeprom_workarea_start__);
+ const uint16_t *end = (const uint16_t *)((uint32_t)flashend);
+ uint16_t val;
+ uint8_t data=0xFF;
+
+ if (!end) {
+ eeprom_initialize();
+ end = (const uint16_t *)((uint32_t)flashend);
+ }
+ if (offset < EEPROM_SIZE) {
+ while (p <= end) {
+ val = *p++;
+ if ((val & 255) == offset) data = val >> 8;
+ }
+ }
+ return data;
+}
+
+static void flash_write(const uint16_t *code, uint32_t addr, uint32_t data)
+{
+ // with great power comes great responsibility....
+ uint32_t stat;
+ *(uint32_t *)&(FTFA->FCCOB3) = 0x06000000 | (addr & 0x00FFFFFC);
+ *(uint32_t *)&(FTFA->FCCOB7) = data;
+ __disable_irq();
+ (*((void (*)(volatile uint8_t *))((uint32_t)code | 1)))(&(FTFA->FSTAT));
+ __enable_irq();
+ stat = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);
+ if (stat) {
+ FTFA->FSTAT = stat;
+ }
+ MCM->PLACR |= MCM_PLACR_CFCC;
+}
+
+void eeprom_write_byte(uint8_t *addr, uint8_t data)
+{
+ uint32_t offset = (uint32_t)addr;
+ const uint16_t *p, *end = (const uint16_t *)((uint32_t)flashend);
+ uint32_t i, val, flashaddr;
+ uint16_t do_flash_cmd[] = {
+ 0x2380, 0x7003, 0x7803, 0xb25b, 0x2b00, 0xdafb, 0x4770};
+ uint8_t buf[EEPROM_SIZE];
+
+ if (offset >= EEPROM_SIZE) return;
+ if (!end) {
+ eeprom_initialize();
+ end = (const uint16_t *)((uint32_t)flashend);
+ }
+ if (++end < (uint16_t *)SYMVAL(__eeprom_workarea_end__)) {
+ val = (data << 8) | offset;
+ flashaddr = (uint32_t)end;
+ flashend = flashaddr;
+ if ((flashaddr & 2) == 0) {
+ val |= 0xFFFF0000;
+ } else {
+ val <<= 16;
+ val |= 0x0000FFFF;
+ }
+ flash_write(do_flash_cmd, flashaddr, val);
+ } else {
+ for (i=0; i < EEPROM_SIZE; i++) {
+ buf[i] = 0xFF;
+ }
+ for (p = (uint16_t *)SYMVAL(__eeprom_workarea_start__); p < (uint16_t *)SYMVAL(__eeprom_workarea_end__); p++) {
+ val = *p;
+ if ((val & 255) < EEPROM_SIZE) {
+ buf[val & 255] = val >> 8;
+ }
+ }
+ buf[offset] = data;
+ for (flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__); flashaddr < (uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_end__); flashaddr += 1024) {
+ *(uint32_t *)&(FTFA->FCCOB3) = 0x09000000 | flashaddr;
+ __disable_irq();
+ (*((void (*)(volatile uint8_t *))((uint32_t)do_flash_cmd | 1)))(&(FTFA->FSTAT));
+ __enable_irq();
+ val = FTFA->FSTAT & (FTFA_FSTAT_RDCOLERR|FTFA_FSTAT_ACCERR|FTFA_FSTAT_FPVIOL);;
+ if (val) FTFA->FSTAT = val;
+ MCM->PLACR |= MCM_PLACR_CFCC;
+ }
+ flashaddr=(uint32_t)(uint16_t *)SYMVAL(__eeprom_workarea_start__);
+ for (i=0; i < EEPROM_SIZE; i++) {
+ if (buf[i] == 0xFF) continue;
+ if ((flashaddr & 2) == 0) {
+ val = (buf[i] << 8) | i;
+ } else {
+ val = val | (buf[i] << 24) | (i << 16);
+ flash_write(do_flash_cmd, flashaddr, val);
+ }
+ flashaddr += 2;
+ }
+ flashend = flashaddr;
+ if ((flashaddr & 2)) {
+ val |= 0xFFFF0000;
+ flash_write(do_flash_cmd, flashaddr, val);
+ }
+ }
+}
+
+/*
+void do_flash_cmd(volatile uint8_t *fstat)
+{
+ *fstat = 0x80;
+ while ((*fstat & 0x80) == 0) ; // wait
+}
+00000000 <do_flash_cmd>:
+ 0: 2380 movs r3, #128 ; 0x80
+ 2: 7003 strb r3, [r0, #0]
+ 4: 7803 ldrb r3, [r0, #0]
+ 6: b25b sxtb r3, r3
+ 8: 2b00 cmp r3, #0
+ a: dafb bge.n 4 <do_flash_cmd+0x4>
+ c: 4770 bx lr
+*/
+
+
+uint16_t eeprom_read_word(const uint16_t *addr)
+{
+ const uint8_t *p = (const uint8_t *)addr;
+ return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8);
+}
+
+uint32_t eeprom_read_dword(const uint32_t *addr)
+{
+ const uint8_t *p = (const uint8_t *)addr;
+ return eeprom_read_byte(p) | (eeprom_read_byte(p+1) << 8)
+ | (eeprom_read_byte(p+2) << 16) | (eeprom_read_byte(p+3) << 24);
+}
+
+void eeprom_read_block(void *buf, const void *addr, uint32_t len)
+{
+ const uint8_t *p = (const uint8_t *)addr;
+ uint8_t *dest = (uint8_t *)buf;
+ while (len--) {
+ *dest++ = eeprom_read_byte(p++);
+ }
+}
+
+int eeprom_is_ready(void)
+{
+ return 1;
+}
+
+void eeprom_write_word(uint16_t *addr, uint16_t value)
+{
+ uint8_t *p = (uint8_t *)addr;
+ eeprom_write_byte(p++, value);
+ eeprom_write_byte(p, value >> 8);
+}
+
+void eeprom_write_dword(uint32_t *addr, uint32_t value)
+{
+ uint8_t *p = (uint8_t *)addr;
+ eeprom_write_byte(p++, value);
+ eeprom_write_byte(p++, value >> 8);
+ eeprom_write_byte(p++, value >> 16);
+ eeprom_write_byte(p, value >> 24);
+}
+
+void eeprom_write_block(const void *buf, void *addr, uint32_t len)
+{
+ uint8_t *p = (uint8_t *)addr;
+ const uint8_t *src = (const uint8_t *)buf;
+ while (len--) {
+ eeprom_write_byte(p++, *src++);
+ }
+}
+
+#else
+#error EEPROM support not implemented for your chip
+#endif /* chip selection */
+
+
+/*****************/
+/* TMK functions */
+/*****************/
+
+void eeconfig_init(void)
+{
+ eeprom_write_word(EECONFIG_MAGIC, EECONFIG_MAGIC_NUMBER);
+ eeprom_write_byte(EECONFIG_DEBUG, 0);
+ eeprom_write_byte(EECONFIG_DEFAULT_LAYER, 0);
+ eeprom_write_byte(EECONFIG_KEYMAP, 0);
+ eeprom_write_byte(EECONFIG_MOUSEKEY_ACCEL, 0);
+#ifdef BACKLIGHT_ENABLE
+ eeprom_write_byte(EECONFIG_BACKLIGHT, 0);
+#endif
+}
+
+void eeconfig_enable(void)
+{
+ eeprom_write_word(EECONFIG_MAGIC, EECONFIG_MAGIC_NUMBER);
+}
+
+void eeconfig_disable(void)
+{
+ eeprom_write_word(EECONFIG_MAGIC, 0xFFFF);
+}
+
+bool eeconfig_is_enabled(void)
+{
+ return (eeprom_read_word(EECONFIG_MAGIC) == EECONFIG_MAGIC_NUMBER);
+}
+
+uint8_t eeconfig_read_debug(void) { return eeprom_read_byte(EECONFIG_DEBUG); }
+void eeconfig_write_debug(uint8_t val) { eeprom_write_byte(EECONFIG_DEBUG, val); }
+
+uint8_t eeconfig_read_default_layer(void) { return eeprom_read_byte(EECONFIG_DEFAULT_LAYER); }
+void eeconfig_write_default_layer(uint8_t val) { eeprom_write_byte(EECONFIG_DEFAULT_LAYER, val); }
+
+uint8_t eeconfig_read_keymap(void) { return eeprom_read_byte(EECONFIG_KEYMAP); }
+void eeconfig_write_keymap(uint8_t val) { eeprom_write_byte(EECONFIG_KEYMAP, val); }
+
+#ifdef BACKLIGHT_ENABLE
+uint8_t eeconfig_read_backlight(void) { return eeprom_read_byte(EECONFIG_BACKLIGHT); }
+void eeconfig_write_backlight(uint8_t val) { eeprom_write_byte(EECONFIG_BACKLIGHT, val); }
+#endif