# **Surviving phishing**

# Password reuse, password managers and strong passwords

## Contents

| Surviving phishing                 | 2  |
|------------------------------------|----|
| Why is Password Reuse a Problem?   | 4  |
| About password strength            | 6  |
| Password Managers to the Rescue!   | 8  |
| Can you trust password managers?   | 9  |
| How do they keep passwords secure? | 10 |

| Generating a Strong Password | 11 |
|------------------------------|----|
| Other advice                 | 13 |
| Resources                    | 14 |

## Why is Password Reuse a Problem?



Consider the following hypothetical users that reuse a strong password in most places and the following common scenario:

| User            | Password                 |
|-----------------|--------------------------|
| mark1@gmail.com | QUo5Qt+1Wa/Q1smDJRDbFg== |
| mark2@gmail.com | +9Hz+/20rVkSkbcsmgdVFw== |
| mark3@gmail.com | wnYkRcbi7Kkh7Fx2uR8EeA== |

- 1. User registers an account with a careless service, eg Facebook, Yahoo, Google, Equifax etc. etc.
- 2. The service is hacked and the password and email is leaked
- 3. The hacker logs in to the email account
- 4. The hacker resets passwords on all important accounts tied to that email address

## About password strength

#### How is strength measured?

'Entropy' *s* depends on the size of the alphabet *a* and the length *n* of the password:

 $s = log_2(a^n)$ 

- 0889234877724602 -> 53 bits
- ZeZJieatdH -> 60 bits

#### Why are weak passwords problematic?

Weak passwords are trivial to crack in many situations. A password with 53 bits may be cracked by a criminal organisation in less than an hour.

#### What about strong passwords?

They are difficult to remember, a problem especially when you use a different strong password for every service. You are also tempted to write them down, or reuse them.

It's surprisingly difficult for humans to generate good passwords! A strong password, as of 2019, has at least 80 bits of entropy.

## Password Managers to the Rescue!

Password managers allow you to create a unique and strong password for every service.

Additional benefits:

- Remembers passwords for you
- Generates passwords for you
- Automagically fills in passwords on websites for you, this is important!
- Makes passwords available on all your configured devices
- Can store additional related data, usernames, answers to security questions, pins for debit/credit cards

Any of the mainstream password manager is equivalent in the above respects.

# Can you trust password managers?

# How do they keep passwords secure?

- 1. User supplies a password
- 2. A slow function derives an encryption key
- 3. The encryption key is used to encrypt/decrypt your passwords

Security of the encryption depends on the strengh of your password:

| Entropy | Time to crack, assuming 1 second per attempt per typical CPU |
|---------|--------------------------------------------------------------|
| 50b     | < 1 Month                                                    |
| 60b     | ~ 50 Years                                                   |
| 70b     | ~ 50,000 yers                                                |

## **Generating a Strong Password**

Passphrases are better than passwords:

- Tr0ub4dor&3 -> 28 bits of entropy, hard to remember
- correct horse battery stable -> 44 bits of entropy, easy to remember

If you have to remember it, use a passphrase.

# Generate passphrases with Diceware <sup>1</sup>

- 1. Roll 5, 6 sided, physical dice
- 2. Read the numbers left to right
- 3. Find the word with that number on a list 6^5 (7776) words
- 4. Repeat until desired length is reached. For a password manager, use at least 7.

- 5. Write down your passphrase on paper and keep it somewhere secure
- 6. If you are 100% confident that you will not forget the passphrase, destroy the paper by burning

#### What about phishing?

- A password manager will refuse to fill out a password on a spoofed website, for instance faceb00k.com vs facebook.com
- Using different passwords on every service protects all other services even if phishing is successful on one of them
- Good password managers will navigate to the login page for you, reducing the risk of spoofed websites

#### Other advice

In no particular order:

- Only log in on webpages that you navigated to by typing in the url yourself, by searching on google, duckduckgo or some other reputable search engine or from a bookmark. If after clicking a link in an email you are directed to a log in page, it's probably a phishing attempt
- Only log in to webpages that are protected by SSL/TLS (HTTPS). Look for a green address bar, or a green lock icon or similar in your browser
- Use two factor or two step authentication everywhere if possible
- Turn of automatic image rendering. Better still, disable HTML rendering and authoring entirely in your email client
- Be suspicious of *all* emails. Risky things: HTML email, images, unknown sender, poor spelling/grammer, 'Your email client can't display this email, click here to view in your browser' or similar attempts to coerce you to click on things

#### Resources

EFF notes on Diceware <sup>2</sup> They generally have good advice for these kinds of topics.

This Presentation <sup>3</sup>

Keepass <sup>4</sup>, an offline password manager

1Password <sup>5</sup>, a pay to use password manager with some nice features

LastPass <sup>6</sup>, an online password manager with a gratis tier

|   | http://world.std.com/~reinhold/diceware.html            |
|---|---------------------------------------------------------|
| 2 | https://www.eff.org/dice                                |
|   | https://git.friedersdorff.com/max/intro_dice_and_pmgmnt |
| Ļ | https://keepass.info/                                   |
| 5 | https://1password.com/                                  |
| 5 | https://www.lastpass.com/                               |
|   |                                                         |